biogeocoenosis

The Grandeur in this View of Life


1 Comment

How Do Tall Trees Move Water (GREAT Video!)

A few weeks ago, my post touched on the amazing way that trees move water from the soil to their leaves, in long continuous strands pulled under tension between the soil and the atmosphere.

Well, the wonderful vlogging team at Veritasium have put together a FANTASTIC video describing the process in clear and entertaining terms. In particular, they do a great job of describing the concept of negative pressure in liquids, noting how the water is “super-sucked” (analogous to super-cooled) and that with the introduction of any gas-phase water, it will spontaneously boil inside the plant! In fact, this is what happens when lightning strikes a tree, causing it to blow off it’s entire outside layer! They also highlight how most of the water (90%) is simply lost to the atmosphere as part of the exchange process that brings CO2 into the leaves for photosynthesis, which is how trees help make rain.

The only fact they fail to mention is that all of that water is actually transporting essential nutrients from the soil (nitrogen, phosphorus, potassium, etc.) to all parts of the plant. Plants make their sugars, and even most of their woody bodies, from light and air, which never fails to amaze me. But they still need mineral nutrients from the soil or they cannot survive. The solutes in the xylem sap are also used to create concentration gradients that help move the sugary products of photosynthesis around to all of the plant’s cells.

Still a beautiful piece of scientific communication! Thanks Veritasium!


2 Comments

Deextinction: Asking the Wrong Question

The phenomenal ecological success of humans and our cadre of partner species (livestock, crops, pets, parasites) has come at great cost to other species. Indeed, one of the hallmarks of the Anthropocene is the sixth mass extinction event, one that is shaping up to be on the order of the End-Cretaceous event that took out the non-avian dinosaurs. Our list of victims includes almost all of the non-dinosaur poster species for extinction: Wooly Mammoths*, Tasmanian “Tigers” (really marsupials), Dodos, Passenger Pigeons, maybe even our close cousins the Neanderthals*. And despite our conservation efforts and good intentions, the Anthopocene extinction event goes on, fueled by human population growth, our monopolization of natural resources (land, plant productivity, fisheries, etc.), and increasingly, anthropogenic climate change.

Dodo_1

This is tragic, but understandable. Earth is finite, the vanishingly thin skin of its Biosphere even more so. As we take more and more, there is less and less to go around. At a very coarse level, the math is remarkably simple, and sad.

Wouldn’t it be great if we could bring them back; if through human ingenuity, hard-won technical know-how, and forward-thinking venture capital investment, we could revivify extinct species? Imagine the crowds of conservationists, dabbing tears from their eyes as the first new flock of Passenger Pigeons is released. Imagine yourself on a Siberian safari, trekking over the remnants of soggy, melting tundra to observe a newly established herd of Wooly Mammoths. Wouldn’t that be great?

That is the vision of “deextinction,” and it is not science fiction. It is a very real endeavor being pursued by a collection of scientists and conservationists. The biotech basics of the process have already been worked out and several projects are up and running, including goals of producing a viable cloned Wooly Mammoth and a new Passenger Pigeon. Last week’s TEDxDeextinction Event was a debutante ball for the project. For a taste, you can watch Stewart Brand’s talk, entitled “The dawn of deextinction: are you ready?”

It may surprise you to know that as an ecologist I would say, emphatically, NO (and I am not alone). Don’t get me wrong, I would LOVE to see a flock of passenger pigeons or a herd of mammoths as much as the next nature geek. And I marvel at the scientific insights and creativity that go into the deextinction project. These people are visionary, brilliant. But Brand’s title asks the wrong question. It does not matter whether we, as individuals, are ready. Instead, I would argue that what really matters is that we, collectively, as the stumbling architects of a new geological epoch, are not ready for this responsibility. Moreover, Earth and its Biosphere are not ready. Developing my argument would go well beyond a blog post, but the summary is rather simple.

Every species is part of a larger ecosystem. This is the fundamental fact of ecology. Many, perhaps even most extinct species belonged to ecosystems that were either coopted by humans, or have changed irreversibly in their absence. The forest/grassland mosaic that was home to the Aurochs (another deextinction target) across Europe is now home to some of the densest human populations on Earth. The world of the Aurochs is gone. The glaciated home of the Mammoth is gone, and we are marching in the opposite direction, climate-wise. The world is not ready for them to come back. Every revived species would need to have a place, and yet, we cannot even seem to make room for the species that are still here. If we cannot responsibly manage the extant species, do we really want to take on reviving extinct ones? I argue that we are simply not ready, not competent enough as a species to handle this task.

I have no illusions. Some form of deextinction will occur, with sad solitary animals, maybe even small populations consigned to zoos and reserves. And I have no doubt that the projects that lead to these breakthroughs will yield tremendous insights, both technical and conceptual. Some of those insights might even help rescue extant threatened species.

And that would be great.

But my fear is that news of these big ideas, of this optimistic, technologically advanced project will be interpreted as a solution to the biodiversity crisis. No need to worry about Tarzan’s Chameleon, the Spoon-billed Sandpiper, the Pygmy Three-toed Sloth, or any of the other 100 most threatened species. Just freeze some DNA, and we’ll bring them back later.

Species need space and food, a functioning ecosystem, not just a genome and a zoo. Perhaps the visionaries of deextinction have fallen prey to the most common form of hubris in science, solving the problem of how they can do it without thinking deeply enough about the questions of why or whether they should do it.

What do you think?

*The role of humans in the extinction of Pleistocene megafauna and the nature of our interactions with Neanderthals are still subject to investigation. But while correlation is certainly not causation, extinction, particularly of large vertebrates, does seem to have followed in the wake of the migrations of evolutionarily modern humans, whether in Eurasia, Australia, Oceania, or the Americas.


1 Comment

Of π Day, Plants, and Paleoclimates

Happy π Day! After not posting anything on Darwin Day, I decided that I could not let another geek holiday go by without a post. So let’s talk about the importance of π in the global biogeocoenosis.

Now you may say, “But π is just about geometry! That’s not biology!” Or maybe if you’ve blocked out 10th grade math, you may say, “But pie is just for dessert!” Allow me to retort:

WRONG!

Biology is all about structure and function and the mathematics of structure (and to some extent, function too, come to think of it….) is geometry. Much of evolutionary biology is concerned with the history, diversification, and development of biological form. On some level, most evolutionary biologists study changes in the geometry of organisms and why it matters. Also, pie makes an excellent breakfast.

So because π relates the diameter of a circle and its circumference, we need to think about the important circles of life. I like trees and the cross-section of a tree trunk is roughly circular, so that seems like a productive place to start! Imagine a beautiful sugar maple like the ones local farmers here in Knox County tap to make maple syrup early every spring. My checker at Wal-Mart told me that just last weekend her husband had really smoked up her house boiling down the last of their haul of sap for this season.

Maples.tapped

So where does that sap come from? The tree stores starch in its roots and early in the season, the roots start moving the starch into the sap to fuel the production of leaves way up in the canopy. The sap flows through little tiny tubes just under the bark of the tree, which is why we can tap into the sap. These tubes, collectively called the xylem system, stretch continuously through the body of the tree, from the tiniest tips of the roots to the veins of every leaf. But how does the sap flow? Are there little pumps down in the roots that push the fluid up? Does it simply “climb” up the little tubes by capillary action? For a long time, this was one of the major mysteries of botany: how do plants, which have nothing resembling a heart, get water from the soil to their leaves, fighting all the while against gravity?

The answer, which has only become fully established over the past few decades, turns out to be a little crazy. The water in the little tubes is not being pushed, but pulled up the tubes. The water molecules form long, continuous strands from the roots to the leaves, stuck together by the electrochemical force of cohesion. And all those tiny strands of water are under tension – they are being stretched like minuscule rubber bands. And the crazy part is that they are being stretched by the air! The underside of leaves are pocked by tiny pores called stomata, and as the water evaporates, it pulls just a bit on the strand of water behind it, all the way down to the roots. So simply because it is drier than the plant’s tissues, the air “sucks” water up from the soil, perfusing all of the plants cells along the way. Plant xylem is one of the wonders of engineering accomplished by evolution. In a single large tree, the xylem can move hundreds of gallons of water over large distances without any direct input of energy on the part of the organism. Talk about efficiency!

About now, you may be wondering, “What about the π?”

To find the importance of π here, we just need to consider the circles in the picture. Not just the big circle of the trunk, but all of the tiny circles that make up the tubes of the xylem. And how tiny they are matters, because the same forces that hold the water molecules together in strands also make it stick to the side of the tubes. In bigger tubes, less of the water is in contact with the wall, so it flows faster. Back in the mid 19th century, scientists figured out that the flow rate (Φ) through a pipe could be described by the following equation:

HP-LawSo there! There is my favorite pi in biology!

The πr4 term, where r is the radius, has to do with the cross sectional area of the pipe and how much fluid is in contact with the wall of the pipe. What is so important about it is not so much the π (sorry, but such is the life of a constant) but the fact that the radius is raised to the fourth power. That means that if you double the radius of a tube, all else equal, you actually increase the flow by a factor of 24 or 16-fold! So plants with bigger tubes can move more water, more quickly.

It turns out that this simple fact has terrific importance for both plant evolution and perhaps even for the history of Earth’s climate. Back in the Cretaceous, 65.5-145 million years ago, Earth’s vegetation was dominated by conifers and ferns. No Triceratops ever munched on a sugar maple. The lineage of flowering plants that are so common today were only just beginning to evolve, and evolutionary biologists have long marveled at their rather explosive (in geological/evolutionary terms, at least) diversification and rise to dominance. Darwin himself called it, “an abominable mystery.” What were the secrets to their success?

Almost certainly, some of them were physiological, and one of the most notable differences between flowering plants and their cousins was in the xylem. Flowering trees had not just discovered flowers and animal pollination (another of the secrets to their success), they had also found a way to make the tubes bigger than those of conifers. And not just a little bigger, a LOT bigger: up to fifty times wider! And because of the πr4 term, even though one of these humongous vessels takes up as much space as 2,500 smaller tubes, the flow rate increases more than 6 million fold! At the same time, the leaves of flowering plants were changing too. The density of leaf veins increased enormously during the Cretaceous, bringing more of the water and soil nutrients in the sap closer to the sites of photosynthesis, and releasing much more water vapor into the atmosphere. The evolutionary relationship between these innovations, their relative order and mutual influence, remain uncertain, but together they changed the world. In fact, they sped it up.

Provided with more water and nutrients, the photosynthetic machinery of the leaves went into overdrive. Vegetation became more productive, capturing more carbon from the atmosphere, though it released more through respiration as well. Those faster living leaves also died younger, speeding up the cycling of nutrients through decomposition. And after the cataclysmic transition from the Cretaceous to the Paleocene, whole forests of flowering trees became dominant over large swaths of the continents, and they even began to make their own rain. With their huge vessels and richly veined leaves, theses trees collectively accelerated the hydrological cycle, moving water into the atmosphere that eventually had to return to the ground as rain. Even erosion may have increased. Recent modeling studies suggest that if Amazon rainforests were constrained to more ancient conifer-style rates of water transport, the dry season would lengthen by up to 80 days, well beyond the tolerance of most rainforest species.

And in making their own world here on Earth, the flowering plants have made our world. No primate ever knew a world without them. Even our climate is a product of their evolution. And we could not understand it without understanding that the ratio of the circumference to the radius of a circle is a transcendental constant.

π for now.

Evolutionary research on the vascular innovations of flowering plants is incredibly exciting right now. Two recent interesting papers (which I drew on for this post) include:

C. Kevin Boyce and Maciej A. Zwieniecki. 2012. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution. Proceedings of the National Academy of Sciences of the USA.

Taylor S. Feild, Timothy J. Brodribb, et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences of the USA.